

Appendix B

Quantification Methods for Tree Planting Projects

Public Comment Version 3 April 2017

Urban Forest Carbon Registry, a 501(c)(3) non-profit organization 999 Third Ave. #4600 Seattle, WA 98104 info@ufregistry.org (206) 623-1823

Copyright © 2016-2017 Urban Forest Carbon Registry. All rights reserved.

This Appendix B on Quantification for Tree Planting Projects consists of a Summary of Quantification Steps, followed by a longer section entitled Quantification Methods and Examples, which provides a more detailed walk-though of quantification methods using a sample project.

We are developing spreadsheet tools that will make using these methods as easy as possible. Users will enter required data in the spreadsheet tool, and the tool will perform the necessary calculations from that data and from tables built into the spreadsheet. We are testing those spreadsheets now and will post them as soon as possible.

Note that quantification methods for Tree Preservation Projects, as distinct from Tree Planting Projects, are contained within the Tree Preservation Protocol.

Summary of Quantification Steps

This section summarizes the steps to quantify carbon storage in tree planting projects. Quantification can occur in three ways. The first is when a Project Operator seeks issuance of forward credits. The second is when a PO seeks issuance of progress credits using the Single Tree Method. The third is when a PO seeks issuance of progress credits using the Canopy Method.

Forward credits can be issued at three tiers – after planting, after year 3, and after Year 5. The quantification method for those forward credits involves projecting the carbon storage of project trees, and adjusting for mortality at each of the three times that forward credits are requested.

Progress credits – credits issued after a project has progressed and trees are more mature – can be issued at any time after year 10 of a project. Progress credits requested at the end of a project that received forward credits also reconcile the forward credits with quantified carbon stored by the end of the project duration.

For quantification leading to progress credits, two different methods are available. Project Operators can select to use the Single Tree Method (where planted trees are scattered among many existing trees, such as street or yard tree plantings) or the Tree Canopy Method (where planted trees are relatively contiguous, such as in park or riparian plantings).

The Single Tree Method requires tracking and sampling of individual trees. The Tree Canopy Method requires tracking of changes in the project's overall tree canopy area using data and the iTree tool. This Appendix B contains an example for each method, with associated spreadsheet tables and calculations.

Steps for Forward Credits

- 1) For each planting site, collect this information
 - a. Unique site number
 - b. Unique tree number (may be several tree numbers at same site if remove & replace)
 - i. Tree species planted
 - ii. Date planted
 - c. Tree number removed
 - i. Date removed
 - d. GPS coordinates (lat/long)
 - e. Notes
- 2) Determine sample size using Sample Size Calculator
 - a. Using your complete list of site numbers, configure it as a list of random numbers that do not repeat and use Excel functions to select random sample of sites to visit (see below)
- 3) PO visits each sample site
 - a. Confirm accuracy of
 - i. Site number

- ii. Tree number
- iii. Species identification
- b. Record status
 - i. Live
 - 1. Original
 - 2. Replacement #1
 - 3. Replacement #2
 - ii. Standing dead
 - iii. Vacant
 - 1. Removal date #1 if known
 - 2. Removal date #2 if known
- c. Photograph tree site
 - i. Include time stamp and GPS coordinates
 - ii. Capture tree size and condition in 2 images at approximately 90°
 - iii. If site is vacant, place orange reflective

rod (4 ft long) where tree was planted to show site location.

- 4) Calculate percentage of sample trees that are live
 - a. Divide number of live trees recorded by total sites sampled (ex: 70/100
 = 0.70)
- 5) Multiple this number by the forecasted CO₂ credits in spreadsheet to adjust forward credits for mortality.

Steps for the Single Tree Method for Progress Credits

1) Describe the project (i.e., dates trees planted, general locations and climate zone used for calculations).

- 2) Create a list of trees planted that contains data on the numbers of trees planted by species (with tree-type for each species), location and date. We provide tables for each climate zone that match species with tree-types.
- 3) Use the Sample Size Calculator that we provide and the Stored CO₂ per Tree Look-Up Table to determine the number of tree sites to sample. We define a "tree site" as the location where a project tree was planted, and use the term "site" instead of "tree" because some planted trees may no longer be present in the sites where they were planted.
- 4) Randomly sample tree sites collecting data on species, status (alive, dead, removed, replaced), dbh (to nearest inch) and photo of tree site (may be with or without the tree planted) with geocoded location and date.
- Fill-in the table provided showing the number of live trees sampled in each 1" dbh class by tree-type.
- 6) Combine data from the step 5 table with the CO₂ Stored by DBH Look-Up Table for your climate zone to calculate CO₂ stored by sampled trees for each tree-type.
- Fill-in the table provided showing number of sites planted, sites sampled and status of sampled tree sites by tree-type. This table calculates Extrapolation Factors.
- 8) Combine data from tables in step 7 (Extrapolation Factors) and step 6 to scale-up CO₂ stored from the sample to the population of trees planted.
- Fill-in the table provided to incorporate error estimates of ±15% to CO₂ stored by the entire tree population.
- 10) Fill-in the table provided to incorporate estimates of co-benefits.

Steps for the Tree Canopy Method for Progress Credits

- 1) Describe the project (i.e., dates trees planted, locations and climate zone).
- 2) Create a planting list that contains data on the numbers of trees planted by species (with tree-type for each species obtained from the table provided).

- Fill-in the table provided using data from the Stored CO₂ per Unit Canopy Look-Up Table for 25 years after planting and numbers of trees planted by tree-type to calculate the Project Index.
- 4) Use i-Tree Canopy to calculate total project area and area in tree canopy.
- 5) In the table provided, multiply the area in tree canopy by the Project Index to calculate total CO₂ stored by trees planted in the project area.
- 6) Fill-in the table provided to incorporate error estimates of ±15% to CO₂ stored by the entire tree population.
- 7) Fill-in the table provided to incorporate estimates of co-benefits.

Quantification Methods and Examples

Forward Credit Quantification

The process summarized above sets out the process for a PO to request issuance of forward credits after planting, after Year 3, and after Year 5. We will be posting a spreadsheet tool that contains look-up tables and calculations built in to the spreadsheet so that projects can enter their project data and then walk though the sheets to quantify CO2 and co-benefits. Overview

	1.0.11														
orware	d Creditin	g Method		1	1										
ho anal	vst can u	this mo	thod to cal	culato tho	amount o	f CO (in r	notric ton	nos tisto	od by live	project tr	oos after î	E voars fr	er forward	croditing	Forward
	•														
			e points ir					-							
		•	when a use n and entry						•						
•						•									
-			the numbe					u. Users w		uns sprea	usneet to	the Regis	iry with ct	mentina	ges of
ampie t	ree sites	so the Reg	istry can v	enty the p	process an	d sampled	i data.	1	1	1	1	1	(1	1
teps			collect the												
2) C	ompile da	ta on the n	umbers of t	rees plant	ed by spec	ies from th	ne Data Col	llection tab	le and use	this inform	nation to f	ill in the P	anting List	(Table 1).	
												in in the Pi		. (Table 1).	
,			lator will au		,				, ,						
			le of sites t												
	allowed tiı pling bias.	ne steps (i	mmediately	y after plar	nting, at ye	ar 3, and a	t year 5) Di	IFFERENT ra	andom san	nples must	be drawn	at each of	those time	es to avoid	any
5) C	ollect data	at each sa	mple site u	sing the Da	ata Collecti	on table ir	ncluded in	this workb	ook. For fu	rther instr	uctions see	e the Data	Collection	sheet.	
6) Ei	nter data o	on the num	ber of live t	rees and v	acant sites	from the	Data Colle	ction table	into Table	5 on the S	ample Data	a sheet.			
7) Fo	orward Cre	edits will be	e automatio	ally calcul	ated in Tab	le 6.									
8) Ta	able 7 auto	omatically i	nfers the a	mount of C	O ₂ stored	after 25 ye	ars from th	he sample	to the pop	ulation of I	ive trees.				
9) Fo	or plannin	g purposes	only, users	can enter	a low and l	high price	of CO <mark>2</mark> (\$ p	oert) in Tab	le 8. Table	9 incorpor	ates error	estimates	of ±15% to	calculate	low and
high	amounts	of CO ₂ store	ed.												

Data Collection

Directions												
Crea	ite a data s	heet with the same fie										
At th	ne time of	data collection soon af	ter plantin	g, record the fo	ollowing infor	mation:						
	Date of da	ta collection.										
	Names of	the crew that collected	l that data.									
At th	ne time of	data collection soon af										
	Date plant	ed										
	Site Id#, a	unique number assign	ed to each	spot a tree is p	lanted at.							
	Species na	ame (botanical name)										
	Tree Id#, t	he unique number tha	t conincide	s with each tre	e that was pl	anted at the site. Wh	en each tree has just	been plan	ted, and the	ere are not a	any dead	
		trees, the tree id#s wi										
		ent tree planted in it, th	nerefore w	hat was origina	ally tree #1 is	now tree #4. If tree #	4 is the next one at th	ne project	that gets rep	placed, that	new tree	
	will then b											
		nd longitude or x and y						ate the site	for remeas	urement.		
		ward Credits, draw a ra										
		is alive, record if it is t			<u> </u>	eplacement (replace	e#1, replace#2).					
		he tree is dead (standi	0,	01	,							
	image#1, t	he unique number for	the first in	nage of this site	2.							
	image#2, t	he unique number for	the second	d image of this	site taken at	90 degrees to the firs	st.					
	Date remo	wed, the date when th	e tree was	removed.								
	Date repla	ced, the date when the	e replacem	ient tree was p	lanted.							
	Notes, inf	ormation concerning tr	ee status,	health, etc.								
Duri	ng subseq	uent field sampling ses	sions you	may find it hel	pful to take a	copy of your original	data sheets along for	reference	when atter	mpting to lo	ocate each	
tree												
Example D												
Data Collect	tion Date:	04/24/2017	Crew: Juli	e and Ed			1					
date live (orig/replace standing dead or date date												
planted site id# species tree id # x coord y coord #1/replace #2) vacant site image#1 image#2 removed replaced in												
9/15/2016		Celtis reticulata	4	33.968715	-117.343649	R#1		1	2			Original tree (#1) removed & replaced (#4)
9/15/2016 2 Pistacia chinensis 2 32.967521 -117.263458 vacant 3 4 2/21/2017											Dead tree (#2) removed , not replaced	
9/15/2016	3	Platanus racemosa	3	32.873459	-116.839654	Orig		5	6			Originally planted tree (#3) alive

Planting List

Directions							
1) In Table 1 record the numb	er of sites planted for each tree species.						
2) If species are not listed, ad	d them to the bottom of Table 1.						
Table 1. Planting List					Table 2. Summary of Planting Sites		
		Tree-Type	No. Sites				
ScientificName	CommonName	Abbreviation	Planted		Tree-Type	Tree-Type Abbreviation	No. Sites Planted
Acacia baileyana	Bailey acacia	BES		1	Brdlf Decid Large (>50 ft)	BDL	140
Acacia melanoxylon	black acacia	BEL			Brdlf Decid Med (30-50 ft)	BDM	94
Acacia species	acacia	BEM			Brdlf Decid Small (<30 ft)	BDS	16
Acer buergerianum	trident maple	BDS			Brdlf Evgrn Large (>50 ft)	BEL	0
Acer negundo	boxelder	BDL			Brdlf Evgrn Med (30-50 ft)	BEM	0
Acer palmatum	Japanese maple	BDS	16		Brdlf Evgrn Small (<30 ft)	BES	0
Acer platanoides	Norway maple	BDL			Conif Evgrn Large (>50 ft)	CEL	0
Acer rubrum	red maple	BDL	33		Conif Evgrn Med (30-50 ft)	CEM	0
Acer saccharinum	silver maple	BDL			Conif Evgrn Small (<30 ft)	CES	0
Acer species	maple	BDL				Total Sites Planted	250
Acer tataricum subsp ginnala	Amur maple	BDS					
Acer x freemanii	Freeman maple	BDL		ĺ			
Aesculus californica	California buckeye	BDS		ĺ			
Aesculus carnea	red horsechestunt	BDM		ĺ			
Aesculus pavia	red buckeye	BDS		ĺ			
Ailanthus altissima	tree of heaven	BDM		ĺ			
Albizia julibrissin	mimosa	BDS					
Alnus cordata	Italian alder	BDM					
Alnus rhombifolia	white alder	BDL					
Araucaria species	araucaria	BEL					
Arbutus unedo	strawberry tree	BES					
Betula pendula	European white birch	BDM					
Betula species	birch	BDM					
Brachychiton populneus	kurrajong	BEM					
Callistemon citrinus	lemon bottlebrush	BES					
Callistemon viminalis	weeping bottlebrush	BES					
Calocedrus decurrens	incense cedar	CEL					
Carpinus betulus 'Fastigiata'	hombeam 'fastigiata'	BDM					
Carpinus caroliniana	American hornbeam	BDM					
Carya illinoinensis	pecan	BDL					
Casuarina equisetifolia	Australian pine	BEL					
Catalpa speciosa	northern catalpa	BDL					
Cedrus atlantica	Atlas cedar	CEL					
Cedrus deodara	deodar cedar	CEL					
Celtis australis	European hackberry	BDL					
Celtis occidentalis	northern hackberry	BDL					
Celtis reticulata	western hackberry	BDS					
Celtis sinensis	Chinese hackberry	BDL	41				
Ceratonia siliqua	algarrobo Europeo	BEM					

Sample Size Calculator

Table 3. Sample Size Calculator		Use the Sampl											
Description	Value	use the term "			because s	ome plant	ted trees ma	ay no longe	r be prese	ent in the			
1) Margin of Error (15% required)	15%	sites where th	ey were plant	ed.									
2) Confidence level (95% required)	95%												
3) Total number of project sites	250	Directions											
4) Mean stored CO ₂ per tree (kg)	1128	1) Margin	of error, the de	fault valu	e of 15% is	used.							
5) Standard deviation of stored CO ₂ (kg)	642	2) Confide	nce level, the	default va	lue of 95%	is used.							
6) Expected proportion of tree survival (75% required)	75%	3) The tota	3) The total number of original sites is automatically filled in from the Planting List tab.										
Calculated sample size	87	 Mean st 	4) Mean stored CO ₂ for all tree types 25 years after planting is automatically filled in from Table										
		below.											
		5) Standar	5) Standard deviation of the average CO ₂ stored for all tree types 25 years after planting is							s			
		automatica	automatically filled in from the Table 4.										
		6) Expecte	d proportion c	f tree sur	vival – for s	ampling p	urposes we	conservativ	ely estima	te that			
		75% of the	planted trees	are expec	ted to surv	ive. This v	alue is used	as the defau	ult in the S	ample			
		Size Calcul	ator.										
		Table 4. Stored	CO ₂ (kg) by tre	e type fo	r years afte	r planting	in Inland Va	lley climate	zone.				
		Age		BDM	BDS	BEL		BES	CEL	-	CES	Avg.	Std. Dev.
		5	104	251	78	59		13	39		47		
		10	-	725	230	239		60	259	203	167		
		15	1.	1,232	395	570		150	761	964	315		
		20							2,021	475			
		25		2,223	721	1,718		478	2,912	2,162	640	1,128	642
		30		2,695		2,536		725	4,688		807		
										2,162	974		
		40	40 7,259 3,589 1,174 4,614 1,799 1,400 9,918 2								974		

Random Sampling

	Use this to crea	se this to create a random list of site IDs to sample.														
Random List																
of Sites	Directions															
124	1) Replace t	he XXXX in the fo	lowing fo	rmula with	the total r	number of	sites, =RAI	NDBETWEE	N(1,XXXX)	. Copy and	paste that	formula				
129	into cell B5.															
16	2) Replace t	he XXXX in the fo	lowing fo	rmula with	the total r	number of	sites,									
165	=LARGE(ROV	v(\$1:\$XXXX)*NOT	(COUNTIF	(\$B\$5:B5,R	OW(\$1:\$X)	(XX))),RAN	IDBETWEEI	N(1,(XXXX+	-2-1)-ROW	(B5)))						
194	Copy and	paste that formu	la into cell	B6. You w	ill get a #N	UM! error	in that cell	. Double cl	ick that ce	ll and then	press					
5	CTRL+SHIFT+	ENTER to enter th	iis as an ar	ray formul	a.											
30	4) Copy cell	B6 down for as m	any rows a	as you are i	required to	sample, t	he resultin	ig values sl	nould all be	e unique.						
182	5) Starting in	5) Starting in cell B5 you have a list of random site numbers where you will collect data.														
207	6) Note that	DIFFERENT rando	om sample	s must be	drawn eacl	6) Note that DIFFERENT random samples must be drawn each time crediting is sought to avoid any sampling bias.										

Sample Data

Dirtections	1													
1) In Table 5 Cols. D-F e	nter the numb	per of live tr	ees sampled (ori	iginally planted, :	1st and 2nd re	eplacements) by	tree type.							
2) In Table 5 Cols. H-I e	nter the numb	er of vacant	sites sampled (o	original tree not r	eplaced, 1st	replacement rer	noved and not re	placed, 2nd repl	acement rem	oved and r	ot replaced) by tree type.		
Table 5. Sample Data on Tree Numbers														
Sample Data	Number of Sites Originially	Original	Live 1st	Live 2nd	Total Sites Sampled -	Sampled Dead Original Planting Not Replaced	Dead - 1st Replacements,	Dead - 2nd Replacements,		Total Sites	Planting Survival	Current Survival w/ Replacements (%)		Total Number Live Trees Inferred from Sample
Brdlf Decid Large (>50 ft)	140	34	4	- 1	39	12	1	0	13	52	65	75	2.69	105
Brdlf Decid Med (30-50 ft)	94	23	1	. 1	25	12	3	0	15	40	58	63	2.35	59
Brdlf Decid Small (<30 ft)	16	4	1	0	-		1	1						10
Brdlf Evgrn Large (>50 ft)						3	0	0	3	8	50	63	2.00	10
	0				0	3	0	0	3	8	50	63	2.00	0
Brdlf Evgrn Med (30-50 ft)	0				0		0	0	0	8 0 0	0 0	0	2.00	0
	000000000000000000000000000000000000000				0		0	0	0 0 0	8 0 0 0	0 0 0	63 0 0 0	2.00 0 0	0
Brdlf Evgrn Med (30-50 ft)	000000000000000000000000000000000000000				0 0 0 0 0	E	0	0	0 0 0 0 0	8 0 0 0	0 0 0 0	63 0 0 0 0 0	2.00 0 0 0	0 0 0 0
Brdlf Evgrn Med (30-50 ft) Brdlf Evgrn Small (<30 ft)	0				0 0 0 0 0 0		0	0	3 0 0 0 0 0	8 0 0 0 0 0	0 0 0 0 0 0	63 0 0 0 0 0 0 0	2.00 0 0 0 0	0 0 0 0 0
Brdlf Evgrn Med (30-50 ft) Brdlf Evgrn Small (<30 ft) Conif Evgrn Large (>50 ft)	0				0 0 0 0 0 0 0 0			0	3 0 0 0 0 0 0 0 0 0	8 0 0 0 0 0 0 0	0 0 0 0 0 0	63 0 0 0 0 0 0 0 0 0	2.00 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0

Forward Credits

Directions								
Using the info	rmation you	u provide ai	nd backgrou	nd data, th	e tool calculates	the amount o	of credits tha	at could be
issued at year	s 1 (10%), 3	(40%) and 5	6 (30%) after	planting. A	A mortality dedu	iction (% loss)	is applied to	o account for
tree losses ba	sed on sam	pling result	s.					

Table 6. Forward credits are based on 10%, 40% and 30% at Years 1, 3 and 5 after planting, respectively, of the projected CO2 stored by live trees 25-years after planting. This value accounts for tree losses based on sampling results.

						10%	40%	30%
	No. Sites Planted	No. Live	Deduction	25-yr CO ₂ stored (kg/tree)	Tot. 25-yr CO ₂ stored (t)	10% CO ₂ (t)	40% CO ₂ (t)	30% CO ₂ (t)
BDL	140	105	0.25	2894.27	303.9	30.39	121.56	91.17
BDM	94	59	0.38	2223.15	130.6	13.06	52.24	39.18
BDS	16	10	0.38	720.75	7.2	0.72	2.88	2.16
BEL	0	0	0	0.00	0.0	0.00	0.00	0.00
BEM	0	0	0	0.00	0.0	0.00	0.00	0.00
BES	0	0	0	0.00	0.0	0.00	0.00	0.00
CEL	0	0	0	0.00	0.0	0.00	0.00	0.00
CEM	0	0	0	0.00	0.0	0.00	0.00	0.00
CES	0	0	0	0.00	0.0	0.00	0.00	0.00
	250	174	0.31		441.7	44.17	176.69	132.51

Total CO₂

In Table 7 the tool infers the amount of CO_2 stored after 25 years from the sample to the population of live trees.

Table 7. Grand Total CO ₂ Stor	ed after 25	years (all	ive trees, in	cludes tree loss	es)	
	No. Sites		Total Live (Original + Replaced Trees)		Sample CO ₂ Tot.	Grand Total CO ₂
Тгее-Туре	Planted	Factor	Sampled	Sample	(kg)	(t)
Brdlf Decid Large (>50 ft)	140	2.69	39	105	112,876.5	303.90
Brdlf Decid Med (30-50 ft)	94	2.35	25	59	55,578.7	130.61
Brdlf Decid Small (<30 ft)	16	2.00	5	10	3,603.7	7.21
Brdlf Evgrn Large (>50 ft)	0	0	0	0	0.00	0.00
Brdlf Evgrn Med (30-50 ft)	0	0	0	0	0.00	0.00
Brdlf Evgrn Small (<30 ft)	0	0	0	0	0.00	0.00
Conif Evgrn Large (>50 ft)	0	0	0	0	0.00	0.00
Conif Evgrn Med (30-50 ft)	0	0	0	0	0.00	0.00
Conif Evgrn Small (<30 ft)	0	0	0	0	0.00	0.00
	250		69	174	172,058.9	441.72

CO₂ Summary

	-					
Directions						
In Table 8, er	nter the low	/ and high	price of CO ₂ in \$ pe	r tonne (t).		
This table in	corporates	error est	imates of ±15% to	the high an	d low estim	nates of
the total CO	2 (t) stored	d by the liv	ve tree population	after 25 ye	ars. For plai	nning
purposes on	ly, it calcu	lates dolla	ar values.			-
			Table 9. Summary	of CO ₂ store	d after 25 ye	ars (all live
Table 8. CO ₂	value		, trees, includes tre	-		·
_				Total CO ₂		
	CO ₂ \$ per			(t) at 25	Low \$	High \$
	tonne		Tree-Type	years	value	value
Low	\$20.00		Brdlf Decid	441.72	\$8,834.31	\$17,668.63
High	\$40.00		Brdlf Evgrn	0.00		
			Conif Evgrn	0.00	\$0.00	\$0.00
			Total	441.72	\$8,834.31	\$17,668.63
				CO ₂ (t)	Total \$	Total \$
			Grand Total CO ₂			
			(t) at 25 years:	441.72	\$8,834.31	\$17,668.63
			High Est. with			
			Error:	507.97	\$10,159.46	\$20,318.92
			Low Est. with			
			Error:	375.46		
			± 15% error = ± 10%		: 3% samplin	g
			± 2% measuremen	t		

Using the information you provide and background data, the tool provides											
estimates of co-benefits after	er 25 years in F	Resource Units	per year and §	5 per year.							
Table 10. Co-Benefits per year after 25 years (all live trees, includes tree losses)											
Table 10. Co-Benefits per yea	-	-	s, includes tre	e losses)							
Res Units											
Ecosystem Services	Totals	Res Unit/site	Total \$	\$/site							
Rain Interception (m3/yr)	734.20	2.94	\$1,512.86	\$6.051							
CO2 Avoided (t, \$20/t/yr)	16.86	0.07	\$337.17	\$1.349							
Air Quality (t/yr)											
03	0.0998	0.0004	\$1,100.35	\$4.401							
NOx	0.0244	0.0001	\$686.65	\$2.747							
PM10	0.0517	0.0002	\$1,072.53	\$4.290							
Net VOCs	0.0010	0.0000	\$10.34	\$0.041							
Air Quality Total	0.1768	0.0007	\$2,869.86	\$11.48							
Energy (kWh/yr & kBtu/yr)											
Cooling - Elec.	39,554.23	158.22	\$4,612.02	\$18.45							
Heating - Nat. Gas	18,835.65	75.34	\$234.40	\$0.94							
Energy Total (\$/yr)			\$4,846.42	\$19.39							
Grand Total (\$/yr)			\$9,566.31	\$38.27							

Co-Benefits

Progress Credit Quantification

There are two different methods for quantifying carbon storage for progress credits in urban forest carbon projects – the Single Tree Method (where planted trees are few or are scattered among many existing trees) and the Tree Canopy Method (where planted trees are relatively contiguous). The Project Operator (PO) can decide which approach to use.

Single Tree Method

The PO calculates the amount of CO₂ currently stored by planted project trees in metric tonnes (t) on a tree-by-tree basis and calculates the total for all live trees, based on sampling of the resource. The following steps are required and illustrated

for a hypothetical planting of 500 street/front yard sites in Sacramento, with 71 trees sampled 25-years after planting.

Step 1. Acquire the following information: numbers of trees planted, date planted, species name and tree-type for each species, gps location and climate zone (Table 1).

Tree types: BDL = broadleaf deciduous large, BDM = broadleaf deciduous medium, BDS = broadleaf deciduous small, BEL = broadleaf evergreen large, BEM = broadleaf evergreen medium, BES = broadleaf evergreen small, CEL = conifer evergreen large, CEM = conifer evergreen medium, CES = conifer evergreen small.

Table 1.	Planting list for	street tree	sites in	Sacramento,	CA (Inland	Valley climate
zone).						

			Number	Tree-Type
Planting List (Species)	Common Name	Tree-Type	Planted	Subtotals
Celtis australis	European hackberry	BDL	45	
Quercus lobata	valley oak	BDL	40	
Ulmus species	elm	BDL	35	120
Jacaranda mimosifolia	jacaranda	BDM	40	
Melia azedarach	Chinaberry	BDM	30	70
Chitalpa tashkentensis	chitalpa	BDS	30	
Diospyros kaki	Japanese persimmon	BDS	20	50
Grevillea robusta	silk oak	BEL	45	
Quercus suber	cork oak	BEL	35	80
Acacia species	acacia	BEM	30	
Eucalyptus cinerea	silver dollar eucalyptus	BEM	25	55
Laurus nobilis	laurel de olor	BES	30	30
Cedrus atlantica	Atlas cedar	CEL	25	
Pinus halepensis	aleppo pine	CEL	25	50
Pinus pinea	Itailian stone pine	CEM	20	
Juniperus species	juniper	CEM	25	45
Total Sites Planted			500	500

Step 2. Measure and record species, status (i.e., alive, standing dead, removed (date), replaced (date/species) and current dbh of live trees (to nearest 1-inch or 2.54-cm) from a sample or census of planted tree sites.

The number of tree sites to sample is derived using the Sample Size Calculator (Fig. 1).

Figure 1. The PO enters project information described below to calculate the sample size necessary to adequately quantify carbon storage.

	Sample Size Calculator*	
Description		Value
1) Choose:	Margin of Error (15% recommended)	15%
2) Choose:	Confidence level (95% recommended)	95%
3) Enter:	Total number of project sites	500
4) Enter:	Mean stored CO2 per tree (kg)	1,534
5) Enter:	Standard deviation of stored CO2 (kg)	832
6) Enter:	Expected proportion of tree survival	85%
	Calculated sample size	76

* Normally assumes 15% margin of error at a 95% confidence interval.

The PO enters the following information:

- 1) Choose the margin of error from the drop down menu, 15% is recommended.
- 2) Choose the confidence level value (%) from the drop down menu, 95% is recommended.
- 3) The total number of sites Enter the total number of original sites, in this example 500.
- 4) Mean stored CO₂ per tree using Table 2, look-up the mean CO₂ stored by all tree types for the closest age after planting date, in this case 25years after planting. Enter this number (1,534 kg) into the Sample Size Calculator.
- 5) Standard deviation of stored CO₂ using Table 2, look-up the standard deviation of CO₂ stored by all tree types for the closest age after planting date, in this case 25-years after planting. Enter this number (832 kg) into the Sample Size Calculator.

6) Expected proportion of tree survival – estimates of survival rates can be based on project experience or pre-sampling. Enter the proportion (%) of expected tree survival into the Sample Size Calculator, in this case 85% (this can be calculated by dividing the expected or known number of trees that have survived by the total number of trees that were planted and then multiplying by 100). Note: if you do not have an estimate for tree survival, 50% should be entered.

Table 2. The Stored CO₂ By Age Look-Up Table shows kg stored per tree by treetype for years after planting in Sacramento, CA (Inland Valley climate zone). There is an equivalent table for each of the 16 U.S. climate zones. Values in the highlighted column for 25-year old trees are used in the Sample Size Calculator and Forward Crediting.

CO2 (kg)	BDL	BDM	BDS	BEL	BEM	BES	CEL	CEM	CES		Std.
Age	ZESE	PYCA	PRCE	CICA	MAGR	ILOP	SESE	PIBR2	PICO5	Avg.	Dev.
5	45	251	78	59	24	13	39	13	47		
10	236	725	230	239	133	60	259	203	167		
15	630	1,232	395	570	315	150	761	964	315		
20	1,256	1,735	560	1,062	550	288	1,623	2,021	475		
25	2,127	2,223	721	1,718	824	478	2,912	2,162	640	1,534	832
30	3,243	2,695	877	2,536	1,128	725	4,688	2,265	807		
35	4,595	3,150	1,028	3,505	1,454	1,031	7,006	2,371	974		
40	6,166	3,589	1,174	4,614	1,799	1,400	9,918	2,479	974		

In this example, 76 sites are needed for sampling to achieve a 15% margin of error with a 95% confidence level for the 500 original project sites, 25 years after planting. Because the gps location of each site was taken when the trees were planted, relocating the tree sites is straightforward. The PO randomly samples 76 of the original sites without bias, visiting each site whether a tree is known to be alive, dead or removed. Because each site is numbered she creates a random number list (i.e., RANDBETWEEN function) without duplicates in Excel to identify the sites to sample.

Table 3. Results from Step 2 combined with information from Step 1 indicate that 76 sites were sampled, 19 of the originally planted trees were removed and 57 remained alive (57+19=76). Of the 19 trees that were removed, 17 were replaced

	Tree-	No. Sites	No. Sites	No. Removed	No. Live	No. Replaced	Total Live +
Sample Data	Туре	Planted	Sampled	Trees	Trees	•	Replaced Trees
Brdlf Decid Large (>50 ft)	BDL	120	20	4	15	4	19
Brdlf Decid Med (30-50 ft)	BDM	70	10	3	7	3	10
Brdlf Decid Small (<30 ft)	BDS	50	9	3	7	2	9
Brdlf Evgrn Large (>50 ft)	BEL	80	12	2	9	2	11
Brdlf Evgrn Med (30-50 ft)	BEM	55	7	3	4	3	7
Brdlf Evgrn Small (<30 ft)	BES	30	4	1	3	1	4
Conif Evgrn Large (>50 ft)	CEL	50	8	1	7	1	8
Conif Evgrn Med (30-50 ft)	CEM	45	6	2	5	1	6
Conif Evgrn Small (<30 ft)	CES	0	0	0	0	0	0
		500	76	19	57	17	74

with the same tree-type. Hence, the total number of live trees is 74 (57 originals +17 replacements). This example assumes that all replacements survived.

Step 3. Record the number of live + replaced trees sampled by tree-type and dbh class (Table 4).

Table 4. This table shows the distribution of the 74 live sampled trees by dbh class. Replacement trees are smaller than the originally planted trees. The initial version of this table is in 1-inch dbh increments, because tree dbh is measured to the nearest 1-inch. The spreadsheet will bin these into 3- and 6-inch dbh classes used to calculate co-benefits.

												Total
	Tree-Type	0-3"	3-6"	6-9"	9-12"	12-15"	15-18"	18-21"	21-24"	24-27"	27-30"	Number
Brdlf Decid Large (>50 ft)	BDL	2	2	1	4	5	5	0	0	0	0	19
Brdlf Decid Med (30-50 ft)	BDM	3	0	0	0	2	5	0	0	0	0	10
Brdlf Decid Small (<30 ft)	BDS	0	2	2	5	0	0	0	0	0	0	9
Brdlf Evgrn Large (>50 ft)	BEL	1	1	1	0	0	4	4	0	0	0	11
Brdlf Evgrn Med (30-50 ft)	BEM	2	1	0	0	2	2	0	0	0	0	7
Brdlf Evgrn Small (<30 ft)	BES	1	0	1	2	0	0	0	0	0	0	4
Conif Evgrn Large (>50 ft)	CEL	0	1	0	0	0	0	0	0	6	1	8
Conif Evgrn Med (30-50 ft)	CEM	1	0	0	0	0	0	3	2	0	0	6
Conif Evgrn Small (<30 ft)	CES	0	0	0	0	0	0	0	0	0	0	0
		10	7	5	11	9	16	7	2	6	1	74

Step 4. Multiply the number of live trees for each tree-type in Table 4 by the CO₂ Stored by DBH Look-Up Table values in Table 5 below. The amount of CO₂ stored is calculated and shown for sampled live trees in Table 6 below.

Table 5. CO₂ Stored by DBH Look-Up Table. The version of the table shows values in 1-inch dbh increments. There is a separate table for each of the 16 US climate zones.

							-	-	1									1												
dbh (cm)	2.5	5.1	7.6	10.2	12.7	15.2	17.8	20.3	22.9	25.4	27.9	30.5	33.0	35.6	38.1	40.6	43.2	45.7	48.3	50.8	53.3	55.9	58.4	61.0	63.5	66.0	68.6	71.1	73.7	76.2
dbh (inches)	1"	2"	3"	4"	5"	6"	7"	8"	9"	10"	11"	12"	13"	14"	15"	16"	17"	18"	19"	20"	21"	22"	23"	24"	25"	26"	27"	28"	29"	30"
Brdlf Decid Large (>50 ft)	1	5	14	30	55	89	135	193	265	351	453	571	708	863	1,038	1,233	1,451	1,690	1,953	2,240	2,553	2,891	3,256	3,649	4,069	4,520	5,000	5,510	6,053	6,627
Brdlf Decid Med (30-50 ft)	3	17	44	85	142	216	309	420	552	704	878	1,073	1,291	1,532	1,797	2,086	2,399	2,738	3,103	3,493	3,910	4,354	4,824	5,323	5,850	6,404	6,988	7,601	8,243	8,914
Brdlf Decid Small (<30 ft)	3	13	34	66	111	169	242	329	432	552	687	840	1,011	1,200	1,408	1,634	1,880	2,145	2,430	2,736	3,063	3,410	3,779	4,170	4,582	5,017	5,474	5,954	6,457	6,983
Brdlf Evgrn Large (>50 ft)	1	6	18	37	64	102	151	212	285	373	475	592	725	875	1,042	1,227	1,431	1,654	1,896	2,160	2,444	2,750	3,078	3,428	3,802	4,200	4,621	5,067	5,539	6,036
Brdlf Evgrn Med (30-50 ft)	1	4	12	26	47	76	114	162	221	291	374	470	580	704	844	999	1,172	1,361	1,568	1,794	2,039	2,303	2,588	2,894	3,220	3,569	3,941	4,335	4,753	5,194
Brdlf Evgrn Small (<30 ft)	3	14	37	71	119	182	260	355	466	594	741	906	1,091	1,295	1,519	1,764	2,030	2,317	2,626	2,956	3,310	3,686	4,086	4,509	4,955	5,426	5,922	6,442	6,987	7,557
Conif Evgrn Large (>50 ft)	1	4	11	23	41	66	98	139	188	247	316	395	486	588	703	830	970	1,124	1,292	1,475	1,673	1,886	2,115	2,360	2,622	2,901	3,197	3,511	3,844	4,195
Conif Evgrn Med (30-50 ft)	1	5	13	28	49	79	118	166	225	295	377	472	580	702	839	991	1,159	1,343	1,543	1,762	1,998	2,252	2,526	2,819	3,132	3,465	3,819	4,194	4,591	5,011
Conif Evgrn Small (<30 ft)	1	4	12	25	44	70	104	147	199	261	333	417	513	621	742	876	1,024	1,187	1,364	1,557	1,766	1,990	2,232	2,491	2,767	3,062	3,375	3,707	4,058	4,428

Table 6. CO₂ stored for the 74 sampled live trees (kg) (rounded to the nearest whole number)

dbh (cm)	2.5	5.1	7.6	10.2	12.7	15.2	17.8	20.3	22.9	25.4	27.9	30.5	33.0	35.6	38.1	40.6	43.2	45.7	48.3	50.8	53.3	55.9	58.4	61.0	63.5	66.0	68.6	71.1	73.7	76.2 5	Sample
dbh (inches)	1"	2"	3"	4"	5"	6"	7"	8"	9"	10"	11"	12"	13"	14"	15"	16"	17"	18"	19"	20"	21"	22"	23"	24"	25"	26"	27"	28"	29"	30" 1	Total
Brdlf Decid Large (>50 ft)	0	5	14	0	110	0	0	0	265	351	905	571	1,416	1,726	1,038	1,233	2,901	3,380	0	0	0	0	0	0	0	0	0	0	0	0	13,915
Brdlf Decid Med (30-50 ft)	3	17	44	0	0	0	0	0	0	0	0	0	1,291	0	1,797	4,172	2,399	5,476	0	0	0	0	0	0	0	0	0	0	0	0	15,199
Brdlf Decid Small (<30 ft)	0	0	0	66	111	0	0	0	865	1,655	1,375	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4,072
Brdlf Evgrn Large (>50 ft)	0	6	0	0	64	0	0	212	0	0	0	0	0	0	0	1,227	2,861	1,654	3,793	4,319	0	0	0	0	0	0	0	0	0	0	14,136
Brdlf Evgrn Med (30-50 ft)	0	0	25	26	0	0	0	0	0	0	0	0	0	704	844	999	1,172	0	0	0	0	0	0	0	0	0	0	0	0	0	3,770
Brdlf Evgrn Small (<30 ft)	0	14	0	0	0	0	0	355	0	594	741	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,704
Conif Evgrn Large (>50 ft)	0	0	0	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2,622	8,702	6,394	3,511	0	0	21,253
Conif Evgrn Med (30-50 ft)	0	0	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,543	1,762	1,998	2,252	2,526	0	0	0	0	0	0	0	10,095
Conif Evgrn Small (<30 ft)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	3	42	96	116	285	0	0	566	1,129	2,600	3,021	571	2,707	2,430	3,678	7,631	9,333	10,510	5,336	6,081	1,998	2,252	2,526	0	2,622	8,702	6,394	3,511	0	0	84,145

Step 5. In this step Extrapolation Factors are calculated that are used to scale-up tree numbers from the sample to the population. Calculate the Extrapolation Factor (# sites planted / # sites sampled) for each tree-type (Table 7). Although not required for the carbon calculations, the sample's gross and net survival rates show the significance of replacement plantings. Gross survival is calculated without replacement as:

Gross survival = (# live that were originally planted/#sample sites) * 100

Net survival is with replacements = (total live + replaced / #sample sites) * 100

Table 7. Of the original planting, sample results indicate that 75% survived (i.e., gross survival rate). With replacements, 97.4% of the sites contained live trees (i.e., net survival rate). The Extrapolation Factor for each tree-type is shown (i.e., for the CEM tree-type it is 7.5 (45/6).

		Number		No. Live	Gross	No.	Total Live +	Net	
	Tree-	Sites	No. Sites	(Original	Survival	Replace-	Replaced	Survival	Extrap.
Sample Data	Туре	Planted	Sampled	Planting)	(%)	ment Plt.	Trees	(%)	Factor
Brdlf Decid Large (>50 ft)	BDL	120	20	15	75.0	4	19	95.0	6.00
Brdlf Decid Med (30-50 ft)	BDM	70	10	7	70.0	3	10	100.0	7.00
Brdlf Decid Small (<30 ft)	BDS	50	9	7	77.8	2	9	100.0	5.56
Brdlf Evgrn Large (>50 ft)	BEL	80	12	9	75.0	2	11	91.7	6.67
Brdlf Evgrn Med (30-50 ft)	BEM	55	7	4	57.1	3	7	100.0	7.86
Brdlf Evgrn Small (<30 ft)	BES	30	4	3	75.0	1	4	100.0	7.50
Conif Evgrn Large (>50 ft)	CEL	50	8	7	87.5	1	8	100.0	6.25
Conif Evgrn Med (30-50 ft)	CEM	45	6	5	83.3	1	6	100.0	7.50
Conif Evgrn Small (<30 ft)	CES	0	0	0	0.0	0	0	0.0	0.00
		500	76	57	75.0	17	74	97.4	

Step 6. Apply the Extrapolation Factors from Table 7 to scale-up from the sample to the population for each tree-type (Extrap. Factor * Live Sample Trees = Total Number of Live Trees). Cut and paste the Sample CO₂ Total (kg) from Table 6, and multiply by the Total Number of Live Trees to calculate Grand Total CO₂. Convert from kg to metric tonnes (divide by 1000) (Table 8).

Table 8. This table shows that there are an estimated 487 live trees (Ext. Factors x Live Sample Trees). The amount of CO_2 stored by the 76 sample trees is 84,145 kg, and when converted to tonnes and extrapolated to the population of 487 trees, totals 557.7 t CO_2 .

				Live	Total	Sample	Grand
	Tree-	No. Sites	Extrap.	Sample	Number	CO2 Tot.	Total CO2
Sample Data	Туре	Planted	Factor	Trees	Live Trees	(kg)	(t)
Brdlf Decid Large (>50 ft)	BDL	120	6.00	19	114	13,915	83.5
Brdlf Decid Med (30-50 ft)	BDM	70	7.00	10	70	15,199	106.4
Brdlf Decid Small (<30 ft)	BDS	50	5.56	9	50	4,072	22.6
Brdlf Evgrn Large (>50 ft)	BEL	80	6.67	11	73	14,136	94.2
Brdlf Evgrn Med (30-50 ft)	BEM	55	7.86	7	55	3,770	29.6
Brdlf Evgrn Small (<30 ft)	BES	30	7.50	4	30	1,704	12.8
Conif Evgrn Large (>50 ft)	CEL	50	6.25	8	50	21,253	132.8
Conif Evgrn Med (30-50 ft)	CEM	45	7.50	6	45	10,095	75.7
Conif Evgrn Small (<30 ft)	CES	0	0.00	0	0	0	0.0
		500		74	487	84,145	557.7

Step 7. Incorporate error estimates and prices to illustrate the range of amount stored and value (Table 9). Sum the tonnes of CO₂ for the three tree-types (Brdlf Decid, Brdlf Evgrn, and Conif Evgrn) and put the totals into Table 9.

Table 9. This summary table shows that with the $\pm 15\%$ error added to the 557.7 t grand total CO₂ stored (see Appendix 1), the actual amount of CO₂ stored is likely to range between 474 t and 641 t. The estimated value, assuming prices of \$20 and \$40 per tonne, ranges from \$9,481 to \$25,654.

	t CO2	\$	20.00	\$	40.00
Tree-Type	at 25 yrs		\$ value		\$ value
Brdlf Decid	212.5	\$	4,250	\$	8,500
Brdlf Evgrn	136.6	\$	2,733	\$	5,466
Conif Evgrn	208.5	\$	4,171	\$	8,342
Total	557.7	\$	11,154	\$	22,308
	CO2 (t)		Total \$		Total \$
Total CO2 (t):	557.7	\$	11,154	\$	22,308
High Est.:	641.3	\$	12,827	\$	25,654
Low Est.:	474.0	\$	9,481	\$	18,962
± 15% error = ±	: 10% form	ulai	ic ± 3% san	npli	ing
± 2% measu	irement (s	ee .	Appendix	1)	

Step 8. Calculate co-benefits (Table 10).

Co-benefits are shown in Table 10 for 487 live trees 25-years after planting. The total annual value of ecosystem services is \$13,861, or \$27.72 per site (500 tree sites planted). Estimated energy savings (\$6,807) are primarily associated with reductions in air conditioning use due to tree shading and climate effects. Rainfall interception and associated stormwater management savings have an estimated value of \$3,291. Benefits associated with the uptake of air pollutants by trees (net \$3,278) is somewhat offset by BVOC emissions. Avoided CO₂ emissions associated with energy savings is valued at \$486 assuming a CO₂ price of \$20 per t. These co-benefits are first-order approximations and dollar values may not reflect the most current prices for local environmental and utility services.

Table 10. Co-benefits estimated for the 487 live trees 25 years after planting calculated using the Inland Valley data found in the i-Tree Streets and Design software. i-Tree prices were used, except for CO_2 , which was \$20 per tonne.

Resource Units in ()	Res Units	RU/site	Total \$	\$/site
Interception (m3)	1,597.0	3.19	\$3,291	\$6.58
CO2 Avoided (kg, \$20/t)	24,289	48.58	\$486	\$0.97
Air Quality (kg)				
03	135.35	0.27	\$1,493	\$2.99
NOx	36.39	0.07	\$1,026	\$2.05
PM10	86.04	0.17	\$1,785	\$3.57
Net VOCs	-99.27	-0.20	-\$1,026	-\$2.05
Air Quality Total	158.52	0.32	\$3,278	\$6.56
Energy (kWh & kBtu)				
Cooling - Elec.	56,987	113.97	\$6,645	\$13.29
Heating - Nat. Gas	13,009	26.02	\$162	\$0.32
Energy Total			\$6,807	\$13.61
Grand Total			\$13,861	\$27.72

Tree Canopy Method

The PO estimates the amount of CO₂ currently stored by planted project trees in metric tonnes (t) based on the amount of tree canopy (TC) determined from remote sensing and an index (CO₂ per unit canopy area) that is weighted by the mix of species planted. The following steps are illustrated for a hypothetical planting of 500 tree sites along a creek in Sacramento, CA measured 25-years after planting.

Step 1. Describe the project, quantify the project area, acquire the following information: numbers of trees planted, date planted, species name and tree-type for each species, gps locations and climate zone (Table 1).

The 500 trees were planted 25-years ago along the Bannon Creek Parkway bordered by Azevedo Dr. (west), Bannon Creek Elementary School (north and east) and West El Camino Ave. (south) (Figure 1). The Project Area, shown outlined in red using a Google image in the i-Tree Canopy application, covers 12.5 acres (5.1 ha). The numbers of trees originally planted are shown by species and tree-type in Table 1.

Figure 1. The Project Area where 500 trees were planted 25-years ago in Sacramento, CA.

Table 1. Planting list for trees planted 25-years ago in the Bannon Creek Parkway Project Area, Sacramento, CA (Inland Valley climate zone)

			Number	Tree-Type
Planting List (Species)	Common Name	Tree-Type	Planted	Subtotals
Celtis australis	European hackberry	BDL	45	
Quercus lobata	valley oak	BDL	40	
Ulmus species	elm	BDL	35	120
Jacaranda mimosifolia	jacaranda	BDM	40	
Melia azedarach	Chinaberry	BDM	30	70
Chitalpa tashkentensis	chitalpa	BDS	30	
Diospyros kaki	Japanese persimmon	BDS	20	50
Grevillea robusta	silk oak	BEL	45	
Quercus suber	cork oak	BEL	35	80
Acacia species	acacia	BEM	30	
Eucalyptus cinerea	silver dollar eucalyptus	BEM	25	55
Laurus nobilis	laurel de olor	BES	30	30
Cedrus atlantica	Atlas cedar	CEL	25	
Pinus halepensis	aleppo pine	CEL	25	50
Pinus pinea	Itailian stone pine	CEM	20	
Juniperus species	juniper	CEM	25	45
Total Sites Planted			500	500

Step 2. For each tree-type, locate the Stored CO₂ by Age and Unit Canopy Look-Up Table (Table 2) for the Inland Valley climate zone at, in this case, 25-years after planting. Copy these values into the Project Index Table (Table 3).

Table 2. The Stored CO₂ by Age and Unit Canopy Look-Up Table contains values for each tree-type in the Inland Valley climate zone at 5-year intervals after planting. Values reflect a single tree's CO₂ per unit tree canopy (TC, kg/m₂) at selected years after planting (from McPherson et al. 2016). Values in the highlighted column for 25-year old trees are used in this example.

r TC (kg/m2)	BDL	BDM	BDS	BEL	BEM	BES	CEL	CEM	CES
Age	ZESE	PYCA	PRCE	CICA	MAGR	ILOP	SESE	PIBR2	PICO5
5	2.4	14.3	5.7	4.9	2.6	4.4	6.6	1.2	5.8
10	5.3	17.5	8.6	8.0	5.2	12.0	17.5	5.5	9.4
15	8.0	19.1	11.7	11.0	7.8	19.6	28.6	13.6	12.1
20	10.7	20.3	14.8	14.0	10.3	26.7	40.0	23.5	14.4
25	13.5	21.1	18.0	16.9	12.8	33.1	52.1	24.9	16.4
30	16.2	21.7	21.2	19.8	15.2	38.8	65.0	25.9	18.3
35	18.9	22.3	24.4	22.6	17.5	44.0	79.2	27.0	20.1
40	21.7	22.7	27.6	25.2	19.8	48.8	95.0	28.1	20.1

Step 3. The numbers of trees planted are multiplied by their respective per tree Stored CO₂ index to calculate Project Indices for each tree-type (last column Table 3). These values are summed (10,766 kg) and divided by the total number of trees planted (500) to derive the Stored CO₂ Project Index (21.53 kg/m²). This value is the average amount of CO₂ stored per unit of tree canopy (TC), after weighting to account for the mix of species planted.

Table 3. This Project Index Table shows 25-year Project CO_2 indices that are calculated in the fourth column as the products of tree numbers planted (col. 2) and the per tree values for 25-Yr Stored CO_2 (col. 3) from Table 2.

	Number	25-Yr Stored CO2	Project Indices
Tree-Type	Planted	Indices (kg/m2 TC)	(kg/m2 TC)
BDL	120	13.5	1,614.7
BDM	70	21.1	1,475.8
BDS	50	18.0	899.4
BEL	80	16.9	1,355.8
BEM	55	12.8	704.2
BES	30	33.1	992.4
CEL	50	52.1	2,602.5
CEM	45	24.9	1,121.1
CES	0	16.4	0.0
Total:	500		10,766.0
		Project Index:	21.53

Step 4. Use i-Tree Canopy or another tool to classify tree cover and estimate the tree canopy (TC) area for the planted tree sites. If using point sampling, continue adding points until the standard error of the estimate is less than 5%.

Using i-Tree Canopy, 110 points were randomly located in the Project Area (PA) and classified as Tree or Non-Tree. The result was 44.9% tree canopy (TC) and 55.1% non-tree cover, both at \pm 4.81% standard error (Std. Er., Table 4). By clicking on the gear icon next to the upper right portion of the image and selecting "Report By

Area" the user can prompt i-Tree Canopy to provide an estimate of the area in Tree or Non-Tree cover. In this example, the PA is 12.5 acres.

Table 4. Results from the i-Tree Canopy analysis are percentages of tree and non-tree cover that are converted to area based on the size of the Project Area (PA, 12.5 acres)

	Tree Cover	Non-Tree Cover	Total PA	Std Er.
Percent (%)	44.9	55.1	100	4.81
Area (ac)	5.6	6.9	12.5	
Area (m2)	22,713	27,873	50,585	

Step 5. To estimate the amount of stored CO_2 in the project tree canopy (TC), multiply the Project Index (from Table 3) by the TC area (m²). Divide by 1,000 to convert from kg to t.

The product of the Project Index (21.53 kg/m² TC) and TC (22,713 m²) is 489,050 kg or 489.1 t CO₂ (Table 5).

Table 5. This table shows that an estimated 22,713 m² of tree canopy (TC) stores 489.1 t of CO_2 .

	Amounts
Tree Canopy Area (m2)	22,713
Project Index	21.53
Stored CO2 (kg)	489,050
Stored CO2 (t)	489.1

Step 6. Incorporate error estimates and prices to illustrate range of amount stored and value (Table 6).

Table 6. This summary table shows that with 15% of the 489.1 t of CO₂ stored added and subtracted to 489.1 t (see Appendix 1) the actual amount of CO₂ stored is likely to range between 415 t and 562 t. The estimated value, assuming prices of \$20 and \$40 per tonne, ranges from \$8,314 to \$22,496.

	CO2 (t)	\$	20.00	\$	40.00
Total CO2 (t):	489.1	\$	9,781	\$	19,562
High Est.:	562.4	\$	11,248	\$	22,496
Low Est.:	415.7	\$	8,314	\$	16,628
± 15% error = ± 10% formulaic ± 3% sampling					
± 2% measurement (see Appendix 1)					

Step 7. Calculate co-benefits (Table 7).

Co-benefits are shown in Table 7 and based on the ecosystem services produced annually per unit TC. Given the 22,713 m² of TC after 25 years, total annual services are valued at \$8,831, or \$18 per site (500 tree sites planted). Estimated energy savings (\$5,354) are primarily associated with reductions in air conditioning use due to tree shading and climate effects. Rainfall interception and associated stormwater management savings have an estimated value of \$2,565. Uptake of air pollutants by trees is somewhat offset by BVOC emissions, resulting in a net benefit of \$532. Avoided CO₂ emissions associated with energy savings is valued at \$380 assuming a CO₂ price of \$20 per t. These co-benefits are first-order approximations and dollar values may not reflect the most current prices for local environmental and utility services.

Table 7. Co-benefits estimated for the 22,713 m² of TC at 25 years after planting 500 trees and calculated using the Inland Valley data found in the i-Tree Streets and Design software. i-Tree prices were used, except for CO_2 , which was \$20 per tonne.

Ecosystem Services	Res Units	Total \$	\$/site
Energy (kWh & kBtu)			
Cooling - Elec.	44,565	\$5,196	\$10.39
Heating - Nat. Gas	12,679	\$158	\$0.32
Energy Total		\$5,354	\$10.71
CO2 Avoided (t, \$20/t)	19	\$380	\$0.76
Air Quality (t)			
03	0.11	\$244	\$0.49
NOx	0.03	\$168	\$0.34
PM10	0.07	\$292	\$0.58
Net VOCs	-0.08	-\$171	-\$0.34
Air Quality Total	0.12	\$532	\$1.06
Rain Interception (m3)	1,245	\$2,565	\$5.13
Grand Total		\$8,831	\$17.66

References and Resources

The look-up tables in both examples were created from allometric equations in the Urban Tree Database, now available on-line at:

http://www.fs.usda.gov/rds/archive/Product/RDS-2016-0005/. A US Forest Service General Technical Report provides details on the methods and examples of application of the equations and is available online at:

http://www.fs.fed.us/psw/publications/documents/psw_gtr253/psw_gtr253.pdf.

The citations for the archived UTD and the publication are as follows. McPherson, E. Gregory; van Doorn, Natalie S.; Peper, Paula J. 2016. Urban tree database. Fort Collins, CO: Forest Service Research Data Archive. http://dx.doi.org/10.2737/RDS-2016-0005

McPherson, E. Gregory; van Doorn, Natalie S.; Peper, Paula J. 2016. Urban tree database and allometric equations. General Technical Report PSW-253. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA.

http://www.fs.fed.us/psw/publications/documents/psw_gtr253/psw_gtr253.pdf

The i-Tree Canopy Tools is available online at: http://www.itreetools.org/canopy/.

Features of ten software packages for tree inventory and monitoring are evaluated in this comprehensive report from Azavea: <u>https://www.azavea.com/reports/urban-tree-monitoring/</u>.

Error Estimates in Carbon Accounting

Our estimates of error include 3 components that are additive and applied to estimates of total CO₂ stored:

Formulaic Error (± 10%) + Sampling Error (± 3%) + Measurement Error (± 2%)

We take this general approach based on data from the literature, recognizing that the actual error will vary for each project and is extremely difficult to accurately quantify. We limit the amount of sampling error by providing guidance on the minimum number of trees to sample in the single-tree approach and the minimum number of points to sample using i-Tree Canopy. If sample sizes are smaller than recommended these error percentages may not be valid. Project Operators are encouraged to provide adequate training to those taking measurements, and to double-check the accuracy of a subsample of tree dbh measurements and tree canopy cover classification. A synopsis of the literature and relevant sources are listed below.

Formulaic Error

A study of 17 destructively sampled urban oak trees in Florida reported that the aboveground biomass averaged 1201 kg. Locally-derived biomass equations predicted 1208 kg with RMSE of 427 kg. Tree biomass estimates using the UFORE-ACE (Version 6.5) model splined equations were 14% higher (1368 kg) with an RMSE that was more than 35% higher than that of the local equation (614 kg or 51%).

Mean total carbon (C) storage in the sampled urban oaks was 423 kg, while i-Tree ECO over-predicted storage by 14% (483 kg C) with a RMSE of 51% (217 kg C). The CTCC under-predicted total C storage by 9% and had a RMSE of 611 kg (39%)

Result: Prediction bias for carbon storage ranged from -9% to 14%

Source: Timilsina, N., Staudhammer, C.L., Escobedo, F.J., Lawrence, A. 2014. Tree biomass, wood waste yield and carbon storage changes in an urban forest. Landscape and Urban Planning. 127: 18-27.

The study found a maximum 29% difference in plot-level CO₂ storage among 4 sets of biomass equations applied to the same trees in Sacramento, CA. i-Tree Eco produced the lowest estimate (458 t), Urban General Equations were intermediate (470 t, and i-Tree Streets was highest (590 t).

Source: Aguaron, E., McPherson, E.G. Comparison of methods for estimating carbon dioxide storage by Sacramento's urban forest. pp. 43-71. In Lal, R. and Augustin, B. (Eds.) Carbon Sequestration in Urban Ecosystems. New York. Springer.

Sampling Error

This error term depends primarily on sample size and variance of CO_2 stored per tree. If sample size is on the order of 80-100 sites for plantings of up to 1,000 trees, and most of the trees were planted at the same time, so the standard deviation in CO_2 stored is on the order of 30% or less of the mean, then the error is small, about 2-4%.

Source: US Forest Service, PSW Station Statistician Jim Baldwin's personal communication and sample size calculator (Sept. 6, 2016)

Measurement Error

In this study the mean sampling errors in dbh measurements with a tape were 2.3 mm (volunteers) and 1.4 mm (experts). This error had small effect on biomass estimates: 1.7% change (from 2.3 mm dbh) in biomass calculated from allometric equations.

Source: Butt, N., Slade, E., Thompson, J., Malhl, Y., Routta, T. 2013. Quantifying the sampling error in tree census measurements by volunteers and its effect on carbon stock estimates. Ecological Applications. 23(4): 936-943.